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ABSTRACT 

Suppose m is a square-free odd integer, and A and B are any two Hadamard  
matrices of order 4m. We will show that A and B are equivalent over the in- 
tegers (that is, B can be obtained from A using elementary row and column 
operations which involve only integers). 

Integral equivale~:ce. If A and B are matrices over the ring Z of  integers, 

A and B are called equivalent (A ~ B) if there are Z-matrices P and Q, of  deter- 

minant +_ 1, such that 

B = P . ~ Q .  

This is the same as saying that B can be obtained from A by performing some 

sequence of the following operations: 

(a) add an integer multiple of one row to another, 

(b) negate some row, 

(c) reorder the rows, 

and the corresponding column operations. The main result about equivalence is 

LEMMA. I f  A is any n x n Z-matr ix ,  then there is a unique Z-matr ix  

D = diag(at ,  a2 , ' " ,  a.) 

such that A ,~ D and 

a l l a 2 1 " " l a , ,  a , + l  . . . . .  a .  = O. 
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where the a s are non-negative.  The  greatest  common divisor o f  i x i subdeter" 

minan ts  o f  A is 

a l a 2 a a . . . a  ~.  

I f  A N E where 

E = 

az 0 
. ° .  

a s  . 

0 

then ai+i is the greatest  common divisor o f  non-zero elements  o f  F .  

The as are called invariants  of  A. 

Hadamard matrices. An Hadamard matrix A of  order n is an n x n matrix 

whose elements are + 1 and which satisfies 

A A  r = nln.  

(See, for example, Chapter 14 of  [1]). I f  A is any Hadamard matrix we can find 

an Hadamard matrix H satisfying 

H .., A ,  

H = Ii 1 1--.B 1 1 

simply by negating rows and columns, H is then normal ized .  

The determinant of  an Hadamard matrix is 

..[. nil 2n 

Certain invariants. Suppose A is an Hadamard matrix of  order n = 4m. 

We will find some of  the invariants of  A. There is no loss of generality in assuming 

that A is normalized. 

Since every element is + 1, al  must be 1. Now subtract the first row from 

every other row, and then the first column from every other column. The result- 

ing matrix 
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[1 0] 
0 K 

is equivalent to A,  and every element of K is 0 or - 2 .  So 

a 2 = 2 .  

By definition 

IAI 
a4m = __. 

a l a  2 . . .  a 4 m _  1 

the numerator is (4m) 2m, and the denominator is the greatest common divisor 

of the (4m - 1)-subdeterminants of  A.  We shall now evaluate this greatest common 

divisor. 

Suppose C is any ( 4 m -  1)-subdeterminant of  A.  Then 

A ~ + 1  

+ 1  

1 11 ° ° °  

1 

+ 1 . . . + 1  

1 . . . 1  = F ;  

B is obtained from C by negating rows and columns, hence 

F is Hadamard, so 

but 

IBI = + I c I "  

FF r = 4mi4 m; 

FFr= [ 4m I'BBr+j4m_l] 

where Jv is the v x v matrix whose every element is + 1. Therefore 

BBr = 4mI4m-1 - J4m-t. 

[ ( r -£ ) lv+~L/o [  = { r+(v -1 )~} ( r -£ )  °-1 



Vol. 7, 1 9 6 9  EQUIVALENCE OF HADAMARD MATRICES 

[2, p. 99], whence, putting v = r = 4m - 1, ;t = - 1 ,  

IB[2 = (4m)4m-2, 

I c l  = -+ (4rrl) 2m-1. 

125 

b~ = ½ai, i > l .  

I A I = + (4m) TM = + 24mm2m' 

but on the other hand 

therefore 

IAI = ± H a ,  

4m-- 1 

= +24ram ]-I b~; 
1=2 

4m-- 1 

I-[ b~ = m 2 m - 1 .  

i = 2  

I f  p is any prime factor of m, then pZm-~ is a factor of this product, p2 does 

not divide a4m, so p2 cannot divide any of  the b~. Hence exactly 2m - 1 of them 

must have a factor p.  By the property 

alla2la3. . . ,  

these must be b2m+l , "" ,b4m-t .  Hence m divides each of  these bt; the rest must 

all be 1. We have 

THEOREM 1. I f  A is Hadamard of order 4m, where m is odd and square-free 
then the invariants of A are 

This works for any (4m-1)-subdeterminant,  so the greatest common divisor is 

(4m) 2m-1, and 

a 4 m  = 4m. 

When m is odd and square-free. We continue the notation of  the last section, 

and further suppose that m is odd and square-free. Since 2 must divide every 

invariant but a x, write 
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1 (once) 
2 ( 2 m -  1 times) 

2m ( 2 m -  1 times) 

4m (once). 

COROLLARY. Any two Hadamard matrices of order 4m, where m is and odd 

square-free, are Z-equivalent. 

When m is even. We can partially extend Theorem 1 to the case where m is 

even and square-free. I f  H is an Hadamard matrix of order 2m, then 

H - H  

is Hadamard of order 4m. Now 

A o] 
0 -2H 

o] 
0 2D , 

where D is the diagonal matrix of Theorem 1 corresponding to H.  (The theorem 

can be applied, as ½m is odd). Thus A is equivalent to a diagonal matrix with 

elements 
1 (once) 

2 (m times) 

m ( m -  1 times) 

2m (m times) 

4 (m -- 1 times) 

4m (once). 

There is a (2m)-subdeterminant 

1.2m.m '~-1 = 22m-lk, 

where k is odd, and another 

1 . 2 " . 4  m-1 = 23m-2. 

The greatest common divisor of these is 22m- 1, so 

ala2"'a2m ~ 2 2m-1. 
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On the other hand each at (after al) is divisible by 2, hence 

a l a  2 , . . a 2 m  > 22m-1.  

equality holds, and 

a 1 = 1, a 2 = a 3 = . . .  = a 2 m  = 2. 

Now we find a4m-1- From an earlier result 

ala2"" a4m-1 = (4m) 2~-1. 

One (4m-2)-subdeterminant is 

O = 2(4m) 2m-2 

obtained by deleting the diagonal elements 4m and 2m. Every other (4m-2)-sub- 

determinant results from replacing one or two of the diagonal elements of  t~ 

by 2m or 4m (or both); every diagonal element of  t5 divides 2m, so 6 divides 

every other (4m-2)-subdeterminant.  Therefore 

a l a  2 . . .  a4m_ 2 = 2(4m) 2m-2, 

a 4 m - 1  = 2m.  

Since m is square-free, 

a2m+l -~- a2m+2 ~ " "  -~- a 4 m _  2 ~- 2 m .  

Thus we have proven 

THEOREM 2. I f  m is even and square-free, and i f  there is an Hadamard matrix 

of  order 2m,  then there is an Hadamard  matr ix  of order 4m of  the type in 

Theorem 1. 

However it is possible that there are also matrices of  these orders with other 

invariants. 

Trivial cases. In the trivial cases (n = 1 or 2) the invariants are of the type in 

Theorem 1. 

A matrix of order 16. Finally we show that there is an Hadamard matrix whose 

invariants are not in the form of Theorem 1. Let H be an Hadamard matrix of  

order 4.1 The invariants of H are thus {1, 2, 2, 4}. I fA is the direct product H x H 

then 

A ,,, diag (1, 2, 2, 4) x diag (1, 2, 2, 4) . 
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This is a diagonal matrix with elements 

1 (once) 
2 (four times) 
4 (six times) 
8 (four times) 

16 (once), 

and these are clearly the invariants of A. 
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