EQUIVALENCE OF HADAMARD MATRICES
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ABSTRACT

Suppose m is a square-free odd integer, and 4 and B are any two Hadamard
matrices of order 4m. We will show that 4 and B are equivalent over the in-
tegers (that is, B can be obtained from A using elementary row and column
operations which involve only integers).

Integral equivalecce. If 4 and B are matrices over the ring Z of integers,
A and B are called equivalent (A ~ B) if there are Z-matrices P and @, of deter-
minant + 1, such that

B = P.Q.

This is the same as saying that B can be obtained from A by performing some
sequence of the following operations:

(a) add an integer multiple of one row to another,
(b) negate some row,
(c) reorder the rows,

and the corresponding column operations. The main result about equivalence is
Lemma. If A is any n x n Z-matrix, then there is a unique Z-matrix
D = diag(ay,az,:++,a,)
such that A ~ D and
a;laz|-a, @41 = =a,=0,

Received January 29, 1969.
122



Vol. 7, 1969 EQUIVALENCE OF HADAMARD MATRICES 123

where the a; are non-negative. The greatest common divisor of i x i subdeter-
minants of A is

a1a2a3"'ai.
If A~ E where
E

ay

a4
0 | F

then a;., is the greatest common divisor of non-zero elements of F.

The a; are called invariants of A.

Hadamard matrices. An Hadamard matrix A of order n is an # X n matrix
whose elements are + 1 and which satisfies

AAT = nl,.

(See, for example, Chapter 14 of [1]). If A4 is any Hadamard matrix we can find
an Hadamard matrix H satisfying

H ~ A,

l 1 -1

simply by negating rows and columns, H is then normalized.
The determinant of an Hadamard matrix is

+ n1/2n

Certain invariants. Suppose 4 is an Hadamard matrix of order n = 4m.
We will find some of the invariants of A. There is no loss of generality in assuming
that 4 is normalized.

Since every element is + 1, a, must be 1. Now subtract the first row from

every other row, and then the first column from every other column. The result-
ing matrix
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Lo i)

is equivalent to A, and every element of K is 0 or —2. So

a2 = 2.
By definition

4]

Ay = £ ————;
G103 Qgm—1

the numerator is (4m)*™, and the denominator is the greatest common divisor
of the (4m —1)-subdeterminants of A. We shall now evaluate this greatest common
divisor.

Suppose C is any (4m — 1)-subdeterminant of A. Then

A’Vril +1.-+1
+1
C
L+ 1
~ — 1 1 1 = F;
1
B
L1

B is obtained from C by negating rows and columns, hence

|B| = £]c].
F is Hadamard, so
FFT = 4amlI,,,;
but
FF'=  4m |
[ \ BB" + Jym—y

where J, is the v x v matrix whose every element is + 1. Therefore
BBT = 4mI4,,,_1 - ‘I4m—1‘

|r =D+, = {r+@- DA} (r—A"1t
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[2, p. 99], whence, putting v =r=4m—-1, 1 = —1,

]Blz - (4m)4m—2’
Ic| = +@m>-t,

This works for any (4m—1)-subdeterminant, so the greatest common divisor is
(4m)*™~1, and
Aym = 4m.
When 2 is odd and square-free. We continue the notation of the last section,

and further suppose that m is odd and square-free. Since 2 must divide every
invariant but a,, write

b = }a;,, i>1.
|4] = +@m™ = +2%"m™;
but on the other hand
lAI = t][]a
am-1

= i 24mm bi;
i=2

therefore

If p is any prime factor of m, then p*™~?

is a factor of this product. p* does
not divide dy,,, so p? cannot divide any of the b;. Hence exactly 2m — 1 of them

must have a factor p. By the property
alla2]a3°~,

these must be b,,4q,+,bym—y. Hence m divides each of these b,; the rest must
all be 1. We have

THEOREM 1. If A is Hadamard of order 4m, where m is odd and square-free
then the invariants of A are
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1 (once)
2 (2m — 1 times)
2m (2m — 1 times)
4m (once).

COROLLARY. Any two Hadamard matrices of order 4m, where m is and odd
square-free, are Z-equivalent.

When m is even. We can partially extend Theorem 1 to the case where m is
even and square-free. If H is an Hadamard matrix of order 2m, then
A = [ H H ]
H - H

is Hadamard of order 4m. Now
A~ H 0 ]
[ 0 —2H

~ D 0]
[0 2D J,

where D is the diagonal matrix of Theorem 1 corresponding to H. (The theorem
can be applied, as 4m is odd). Thus A is equivalent to a diagonal matrix with
elements
1 (once)
2 (m times)
m (m — 1 times)
2m (m times)
4 (m — 1 times)
4m (once).

There is a (2m)-subdeterminant

1:2"mm = 22,
where k is odd, and another

1-2me4mmt = 23m2

22m— 1

The greatest common divisor of these is , SO

18y Qs =< 22m_1.
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On the other hand each q; (after a,) is divisible by 2, hence
a8;++ g 2 2271
equality holds, and
a; =1,a, = a3 = - = a,, = 2.
Now we find ay,,.,. From an earlier result

312" Qgmey = (4m)*" 71
One (4m—2)-subdeterminant is
§ = 2(4m)*m~2

obtained by deleting the diagonal elements 4m and 2m. Every other (4m-2)-sub-
determinant results from replacing one or two of the diagonal elements of &

by 2m or 4m (or both); every diagonal element of & divides 2m, so & divides
every other (4m—2)-subdeterminant. Therefore
413" gy = 2(4m)*™ 72,
Agm—-1 = 2m.
Since m is square-free,
m+1 = Qamiz = *°° = Ggp-g = 2m.

Thus we have proven

THEOREM 2. If m is even and square-free, and if there is an Hadamard matrix
of order 2m, then there is an Hadamard matrix of order 4m of the type in
Theorem 1.

However it is possible that there are also matrices of these orders with other
invariants.

Trivial cases. In the trivial cases (n = 1 or 2) the invariants are of the type in
Theorem 1.

A matrix of order 16. Finally we show that there is an Hadamard matrix whose
invariants are not in the form of Theorem 1. Let H be an Hadamard matrix of
order 4.; The invariants of H are thus {1, 2, 2, 4}. If 4 is the direct product H x H
then

A ~ diag(1,2,2,4) x diag(1,2,2,4).
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This is a diagonal matrix with elements

1 (once)

2 (four times)
4 (six times)
8 (four times)
16 (once),

and these are clearly the invariants of 4.
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